Оставьте заявку, мы подберем для вас подходящего специалиста за 48 часов!
Премия рунета

Каталог ИТ-специалистов Аналитика

Найдите проверенных специалистов для решения ваших задач
В нашей базе более 11550 проверенных специалистов от 363 IT‑компаний
banner
Найдено 17 специалистов в публичном доступе
Новые специалисты
Ключевые навыки
Цена, ₽/час
Цена включает НДС
Дата бронирования
Подкатегории
Страна
Город
Опыт работы
Формат работы
Отрасли работы
Готов работать на зарубежных проектах
Владение языком
Пол
Возраст
Найдено 17 специалистов в публичном доступе
XGBoost
Telecom • Travel, Hospitality & Restaurant business
СЧ
Салман Ч.
Москва
Data Scientist
Senior
3,750 Р/час
Numpy
Pandas
Python
SciPy
XGBoost
SQL
Data Analysis
ML
Computer Vision
Matplotlib
+28

Data scientist с широким набором навыков в области анализа данных и машинного обучения. Ключевые компетенции включают регрессию, классификацию, кластеризацию, работу с деревьями решений, ансамблевыми моделями (включая Random Forest и градиентные бустинги), а также модели прогнозирования временных рядов. Опытен в области нейронных сетей и компьютерного зрения. В моем арсенале такие библиотеки, как NumPy, Pandas, Matplotlib, Seaborn, Scikit-learn, PyTorch, XGBoost, LightGBM, statsmodels и PySpark. Мой опыт также включает в себя разведывательный анализ данных, их предобработку и feature engineering. Успешно применял LLM и CNN в своих проектах. Помимо этого, есть опыт работы с инструментами, такими как SQL, Git, Bash, Docker, Streamlit и HuggingFace. Среди моих дополнительных навыков можно выделить A/B-тестирование и высокую способность к самообучению в процессе работы.

Подробнее
AI & Robotics • Manufacturing
ДК
Даниил К.
Минск
Data Scientist
Middle+
4,250 Р/час
Apache Spark
API
AWS
Azure
Bash scripting
BLoC
CloudWatch
Data Factory
DevOps
Docker
+66

Специалист по данным / Инженер по Машинному Обучению с опытом работы 3 года. Специалист по данным с сильным математическим образованием и хорошими навыками программирования. Обладает универсальным набором навыков, охватывающим инженерию данных и анализ данных, с возможностью адаптации к динамичной рабочей среде. Специализируется на обработке естественного языка, компьютерном зрении и прогнозирующем моделировании в различных областях бизнеса. Имеет опыт работы на всех этапах обработки и анализа данных, от понимания бизнес проблем до внедрения моделей ML в эксплуатацию. Языки программирования: Python. Технологии программирования gradio. Data science Pandas, Numpy, Seaborn, Plotly. Машинное обучение Scikit-learn, XGBoost, BitsAndBytes. Глубокое обучение PyTorch, Tensorflow, Keras, OpenVINO, TensorRT, TensorBoard, NVIDIA NGC. Компьютерное зрение OpenCV, Torchvision. Обработка естественного языка Hugging Face, OpenAI API, Langchain, PEFT, Spacy, Gensim, NLTK, BERTopic. MLOps MLFlow. Инженерия данных Apache Spark, PySpark. Облачные технологии AWS(Sagemaker, S3, EKS, EC2, Bedrock, DynamoDB, Cloudwatch и т. д.), Azure(Virtual Machines, Spot VM, SQL, ML, Functions, Synapse, Analysis Services, Data Factory, Blob Storage, DevOps, etc). Базы данных Redis, MongoDB, PostgreSQL. DevOps Docker, Docker Compose, Kubernetes (k8s), Bash Scripting. Системы контроля версий Git, Github. Достижения Настройка инфраструктуры AWS Настроил инфраструктуру AWS для мониторинга и отслеживания моделей на этапе экспериментов, что позволило сделать процесс разработки более удобным и эффективным, а развертывание моделей машинного обучения - надежным и безопасным. Коммуникационный чат-бот Разработан коммуникационный чат-бот с LLM для разговоров от лица различных персонажей и с ответами на пользовательские запросы.

Подробнее
E-commerce & Retail • Travel, Hospitality & Restaurant business
МГ
Максим Г.
Минск
Data Scientist
Middle+
4,250 Р/час
AllenNLP
Apache AirFlow
Apache Spark
AWS
Azure
BLoC
CloudWatch
Data Factory
Databricks
Docker
+56

Специалист по анализу данных / Инженер по машинному обучению с опытом работы более 3-х лет. Специалист по анализу данных, специализирующийся на дата-центрированных проектах. Умение выявлять бизнес-проблемы и решать их с использованием различных подходов обработки и анализа данных, подтвержденное на практике. Умение работать со полным жизненным циклом проектов машинного обучения: от сбора данных до развертывания обученных решений. Области специализации: обработка естественного языка, модели прогнозирования и компьютерное зрение. Языки программирования Python. Технологии программирования GeoPy. Наука о данных Pandas, Matplotlib, Numpy, Seaborn, Plotly, PowerBI. Машинное обучение Scikit-learn, Hyperopt, kmodes, UMAP, Prophet, Boruta, LightGBM, XGBoost. Глубокое обучение PyTorch, NVIDIA NGC. Компьютерное зрение Tesseract OCR. Обработка естественного языка Hugging Face, AllenNLP, Gensim, NLTK. MLOps MLFlow, Neptune. Инженерия данных pache Airflow, Apache Spark, PySpark. Облачные технологии AWS(Lambda, SageMaker, S3, EC2, ECR, EKS, CloudWatch и т. д.), Azure(VMs, ML, Databricks, Blob Storage, DataFactory). Базы данных PostgreSQL, MySQL, Redis. DevOps Docker, Docker Compose, Kubernetes(k8s). Системы контроля версий Git, Github. Достижения Помощник по юридическим документам Разработал систему для предложения пользователям структуры документов и автодополнения текстовых предложений в типовых юридических контрактах, использующую модели на архитектуре transformer. Настройка инфраструктуры AWS Настроил инфраструктуру AWS для мониторинга моделей и метрик на этапе экспериментирования, что позволило сделать процесс разработки более удобным и эффективным, а также ускорило развертывание моделей машинного обучения. Настройка обработки данных Разработал конвейеры ETL с Azure Databricks и Apache Spark для эффективной интеграции данных из разных источников в центральное хранилище для дальнейшего использования в аналитической платформе.

Подробнее
LifeStyle
ГР
Гатауллин Р.
Казань
Data инженер
Senior
5,625 Р/час
DevOps
Docker
Flask
GitLab
GitLab CI/CD
metabase
ГОСТ
Управление командой
Apache AirFlow
PostgreSQL
+61

- Data Engineer с опытом работы с распределенными системами обработки данных более 9 лет; - Глубокие знания проектирования, внедрения и сопровождения ETL-процессов с нуля; - Практический опыт управления командой и управления продуктом; - Кандидат наук (= PhD в России) в области компьютерных наук. Опытный инженер данных Создал платформу данных с нуля. Из языков программирования — преимущественно Python, преимущественно SQL, Sparks, Scala. из облачных сервисов AWS — создание некоторой инфраструктуры, GCP — 5 мес. опыта. Инструменты управления — Docker-Master of Docker, Kubernetes — создает инфраструктуру воздушного потока. Базы данных: PostgreSQL, Redis-как брокер сообщений, Из отраслей-маркетинг, продажи, финтех Опыт работы в НЛП, ML-знает концепцию, работал руководителем группы, также работал специалистом по данным в Data Analyst.

Подробнее