Каталог специалистов

Найдите проверенных специалистов для решения ваших задач
В нашей базе более 24250 проверенных специалистов
banner
Найдено 12 специалистов в публичном доступе
Новые специалисты
Ключевые навыки
Частичное совпадение Полное совпадение
Цена, ₽/час
Цена включает НДС
Дата бронирования
Подкатегории
Страна
Город
Опыт работы
Формат работы
Тип занятости
Готов выйти в штат
Отрасли работы
Готов работать на зарубежных проектах
Владение языком
Пол
Возраст
Найдено 12 специалистов в публичном доступе
SpaCy
E-commerce & Retail • FinTech & Banking • Marketing, Advertising & Design • Social Networking
ЭЛ
Эдуард Л.
Тбилиси
ML разработчик
Middle+
3 082,74 Р/час
Apache AirFlow
AWS
Bert
BigQuery
C
claude
Confluence
DigitalOcean
Docker
Elasticsearch
+45

Machine Learning Engineer с более чем 3-летним опытом коммерческой разработки. Эксперт в области NLP, оптимизации моделей машинного обучения и построения ETL-конвейеров. Обладаю глубокими знаниями в Python, PyTorch, FastAPI, Docker, Airflow. Имею опыт работы с LLM (Llama, GPT-3.5, Mistral), BERT, Stable Diffusion. Опыт развертывания ML-сервисов в GCP, AWS, DigitalOcean, а также интеграции ML-моделей с API и мессенджерами. ПРОФЕССИОНАЛЬНЫЕ НАВЫКИ: ● Разработка и развертывание ML-моделей для анализа текста, NLP и генерации контента ● Работа с большими языковыми моделями (Llama, GPT-3.5, Mistral, BERT) ● Тонкая настройка моделей и оптимизация инференса (BERT, Llama 2, GPT-3.5) ● Компьютерное зрение и генерация изображений (Stable Diffusion) ● Обучение моделей анализа текстов и транскрибации (BERT, Llama 2) ● Работа с Hugging Face Transformers: Использование библиотеки Hugging Face для тонкой настройки и оптимизации моделей (BERT, Llama 2, GPT-3.5) в различных проектах. ● Интеграция OpenAI, Cohere, Claude: Работа с API OpenAI, Cohere и Claude для задач генерации текста, анализа и оптимизации моделей. ● Интеграция ML-моделей в бизнес-процессы (автоматизация для малого и среднего бизнеса в США) ● Развертывание ML-сервисов и API (FastAPI, Docker, Kubernetes) ● Создание ETL-конвейеров для обработки данных (Airflow, SQL, BigQuery, PostgreSQL) ● Мониторинг и тестирование ML-моделей (Prometheus, Git) ● RAG, специализированное обучение на данных. ● Работа в Agile-командах (Jira, Confluence)

Подробнее
FinTech & Banking • Logistics & Transport • RnD
МС
Михаил С.
Москва
Data Scientist
Senior
3 376,62 Р/час
sktime
AWS
SpaCy
Numpy
Heroku
Git
Pandas
Go
FastAPI
Seaborn
+21

Имеет обширный практический опыт в области обработки и анализа данных, разработки ML-моделей, проектирования и внедрения MLOps инфраструктуры и процессов, разработки специализированных аналитических инструментов в финансовой, ритейл, медиа, промышленной, медицинской и логистической сферах. Имеет опыт организации e2e-процессов: от формализации идеи до разработки и внедрения в промышленную эксплуатацию целевого решения. Может работать как самостоятельно, так и в составе сформированной команды, в том числе при необходимости может собрать и лидировать команду. Любит делиться своим опытом и знаниями с коллегами. Любит узнавать от коллег что-то новое, перенимать практики и опыт. Придерживается мнения, что открытые коммуникации с клиентами и коллегами, а также грамотное управление ожиданиями — это основа успешного проекта.

Подробнее
AI & Robotics • BioTech, Pharma, Health care & Sports • HRTech
ИС
Илья С.
Гродно
ML разработчик
Middle
3 596,88 Р/час
Python
C++
Java
R
Анализ и визуализация данных
Matplotlib
Numpy
Pandas
NLP
Gensim
+64

Специалист по машинному обучению и обработке данных с более чем 3-летним опытом разработки решений на основе ИИ, систем обработки естественного языка (NLP) и приложений компьютерного зрения. Владеет языком программирования Python, а также библиотеками PyTorch, scikit-learn и PostgreSQL. Опытен в области обработки естественного языка (NLP), глубокого обучения, анализа и визуализации данных. Имеет опыт создания масштабируемых архитектур, интеграции больших языковых моделей (LLM) и оптимизации ИИ-моделей. Обладает сильными навыками решения проблем, опытом проектирования системной архитектуры и разработки функционала. Увлечен инновациями, автоматизацией и принятием решений на основе ИИ.

Подробнее
AI & Robotics • Manufacturing
ДК
Даниил К.
Минск
Data Scientist
Middle+
4 415,58 Р/час
Apache Spark
API
AWS
Azure
Bash scripting
BLoC
CloudWatch
Data Factory
DevOps
Docker
+65

Специалист по данным / Инженер по Машинному Обучению с опытом работы 3 года. Специалист по данным с сильным математическим образованием и хорошими навыками программирования. Обладает универсальным набором навыков, охватывающим инженерию данных и анализ данных, с возможностью адаптации к динамичной рабочей среде. Специализируется на обработке естественного языка, компьютерном зрении и прогнозирующем моделировании в различных областях бизнеса. Имеет опыт работы на всех этапах обработки и анализа данных, от понимания бизнес проблем до внедрения моделей ML в эксплуатацию. Языки программирования: Python. Технологии программирования gradio. Data science Pandas, Numpy, Seaborn, Plotly. Машинное обучение Scikit-learn, XGBoost, BitsAndBytes. Глубокое обучение PyTorch, Tensorflow, Keras, OpenVINO, TensorRT, TensorBoard, NVIDIA NGC. Компьютерное зрение OpenCV, Torchvision. Обработка естественного языка Hugging Face, OpenAI API, Langchain, PEFT, Spacy, Gensim, NLTK, BERTopic. MLOps MLFlow. Инженерия данных Apache Spark, PySpark. Облачные технологии AWS(Sagemaker, S3, EKS, EC2, Bedrock, DynamoDB, Cloudwatch и т. д.), Azure(Virtual Machines, Spot VM, SQL, ML, Functions, Synapse, Analysis Services, Data Factory, Blob Storage, DevOps, etc). Базы данных Redis, MongoDB, PostgreSQL. DevOps Docker, Docker Compose, Kubernetes (k8s), Bash Scripting. Системы контроля версий Git, Github. Достижения Настройка инфраструктуры AWS Настроил инфраструктуру AWS для мониторинга и отслеживания моделей на этапе экспериментов, что позволило сделать процесс разработки более удобным и эффективным, а развертывание моделей машинного обучения - надежным и безопасным. Коммуникационный чат-бот Разработан коммуникационный чат-бот с LLM для разговоров от лица различных персонажей и с ответами на пользовательские запросы.

Подробнее
AI & Robotics • BioTech, Pharma, Health care & Sports • Information Security • Telecom • VR/AR
ВК
Владимир К.
Москва
Data Scientist
Senior
4 624,11 Р/час
C
C#
C++
Java
Julia
Microsoft
Python
SQL
Zerolog
+72

Языки программирования Python, C, C++, Java, JS, Julia, SQL, C#, Prolog Фреймворки, библиотеки TensorFlow 1/2, PyTorch, Pandas, Numpy, Sklearn, Spacy, Matplotlib/Seaborn, MATLAB, NLTK, RASA, OpenCV, CUDA, boto3, данные ГИС ML-экспертиза Обработка естественного языка: - NER, QA, Chatbots, Intents Matching, Text Classification, Sentiment Analysis, Emotion Detection, Text Abstraction, Text Generation, Clustering, Language Translation - Трансформаторы, BERT, RoBERTa, all-mpnet-base-v2, GPT-3, HDBSCAN, UMAP, RNNs, LSTMs, GRUs, LDA, Gaussians, LSH, K-means Компьютерное зрение - Классификация изображений, обнаружение объектов, сегментация изображений, распознавание таблиц, распознавание структуры таблиц, OCR, распознавание лиц, 3D реконструкция лиц, создание подписей к изображениям - Визуальные трансформаторы, DETR, TableFormer, ConvNets, YOLO3/4, YOLOX, Mask R-CNNs, Fast R-CNNs, Faster R-CNNs, ResNets, VGG, GANs Классические и другие ОД: - Анализ временных рядов, скоринговые модели, регрессии, предикторы, линейная регрессия, логистическая регрессия, SVM, деревья решений, градиентный бустинг (XGBoost, CatBoost), ансамбли, байесовцы, уменьшение размерности, PCA, PCE, t-SNE Контролируемое, полу контролируемое, неконтролируемое обучение и обучение с подкреплением Базы данных Postgres, DynamoDB, NEO4J, JanusGraph, SQLAlchemy Облачные сервисы AWS (SQS, SNS, SageMaker, Lambdas, EC2, S3, Textract, VPC, CloudTrail и т.д.), GСloud Разработка программного обеспечения Git, Docker, Podman, Linux, Bash, Ansible, Sentry, GitLab CI/CD, Conda, Jupyter, VS Code, Pycharm Другие инструменты/навыки Отлично

Подробнее
EdTech • FinTech & Banking • Insurance • LifeStyle
ВБ
Вера Б.
Ереван
Data Scientist
Senior
5 324,67 Р/час
Apache
GitHub
Matplotlib
MXNet
MySQL
PostgreSQL
Python
R
Scikit-learn
Seaborn
+35

Вера — опытный специалист в области Data Science с опытом работы более 4 лет. Она обладает глубокими знаниями и навыками в сфере машинного обучения, анализа данных и разработки моделей. Вера работала над несколькими проектами в таких отраслях, как EdTech, FinTech & Banking, LifeStyle и Insurance. В её обязанности входило: мониторинг производительности модели, определение показателей производительности, разработка стратегий переобучения модели, оптимизация использования ресурсов модели, повышение продаж продукции, анализ данных о продажах, прогнозное моделирование, анализ оттока, прогноз продаж, разработка языковой модели, модельное архитектурное проектирование, управление командой, оценка показателей производительности и документация. Она также имеет опыт работы с различными инструментами и технологиями, такими как Apache, GitHub, Matplotlib, MXNet, MySQL, PostgreSQL, Python, R, Scikit-learn, Seaborn, SQL, Tableau, Tensorflow, базы данных, визуализация данных, контроль версий, обучение, языки программирования, Notion, CI/CD, Pipelines, PyTorch, MongoDB, SciPy, API, AWS, Dialogflow, openAI, SpaCy и статистические модели.

Подробнее